
WEEK ONE: INTRODUCTION TO CODING

http://www.codecademy.com/tracks/afterschool-semester1

Go through what’s going to happen during the semester: everyone will be coding

while you learn.

Ask students what their goals are, what they already know about technology and the

Discussion:

What is programming?

What is a browser?

Where can you see HTML & CSS? View the source code of your school website.

Where in the everyday world one can see programming?

What knitting and mathematics have to do with programming?

What would happen if computers disappeared?

What will happen in the future as computers get smaller, faster, and cheaper?

Look up the history of the printing press and how cheap paper manufacturing

 radically changed access to reading and writing across economic classes. Can

 you see any parallels to programming and our modern society?

WEEK TWO: HTML FUNDAMENTALS

http://www.codecademy.com/tracks/afterschool-semester1

HTML is the bones under every single web page on the web. You will learn the

fundamentals of HTML to make your own basic website. You will include images,

Project: Build Your First Webpage.

Discussion:

 elements (use Ctrl-F). What other familiar tags can you spot?

Show students how to use shortcuts to copy-paste code. For Windows it’s

 ctrl + c and ctrl + v, for Mac cmd + c and cmd + v.

 formating. HTML and CSS are called markup languages that the students need

 to know in order to create a canvas for web applications and programs that you

WEEK THREE: MORE WITH HTML

http://www.codecademy.com/tracks/afterschool-semester1

Topics covered in the lesson: Lists - Styles - Tables

Project: Make a Recipe Card

Discussion: Ask everyone to look at http://w3schools.com/html and choose a tag

WEEK FOUR: HTML REVISION

http://www.codecademy.com/tracks/afterschool-semester1

Go through what you have learned so far and have students present what kind of sites

they have built. Now is a good time to make sure they understand that indentation is

very important, both so others can read their code and so they can make sure to catch

any errors or unclosed tags.

Make sure students remember at least the following:

WEEK FIVE: STYLE WEBPAGES WITH CSS

http://www.codecademy.com/tracks/afterschool-semester1

beautifully formatted page.

Topics covered:

Project: First Website Using HTML and CSS

Discussion:

 fonts and overall styling to make their pages ugly or beautiful.

 website on their computer.

WEEK SIX: ADVANCED CSS SELECTORS

http://www.codecademy.com/tracks/afterschool-semester1

You’ve seen a glimpse of the magic of CSS selectors. Now it’s time to grasp the full

Topics covered:

Pseudoselectors

Project: Build a Resume

Discussion: As they build their resume, have the students imagine they’re applying for

a real job when they are 22.

backgrounds.

High school seniors could create a college application website with information

about their work and activities.

WEEK SEVEN: INTRO TO CSS POSITIONING

http://www.codecademy.com/tracks/afterschool-semester1

which is fundamental to understanding positioning. Be patient as you learn it—it may

require some practice to thoroughly learn it. Diagramming your page on paper before

Topics covered:

Project: Create a Personal Webpage

Discussion:

Have a short look into the history of computer science: Who is Alan Turing?

 Gosling? Grace Hopper?

WEEK EIGHT: ADVANCED CSS POSITIONING

http://www.codecademy.com/tracks/afterschool-semester1

positioning.

Topics covered:

Project:

Discussion:

lets you inspect the structure of web pages.

what’s going on.

in the browser and see it change live on the page.

Ask everyone to look at http://w3schools.com/css and choose an attribute to

WEEK NINE: CSS REVISION

http://www.codecademy.com/tracks/afterschool-semester1

Go through what you have learned so far and have students present what kind of

sites they have built. Now is a good time to make sure students know how to format

CSS stylesheets properly, indenting blocks with two spaces and leaving blank lines in

between blocks.

Make sure students remember at least the following:

selector { property : value;}, color, background-color, where to put your CSS and how to

link to it from the HTML page

 with the

view your web page!

WEEK TEN: GETTING STARTED WITH PROGRAMMING

http://www.codecademy.com/tracks/afterschool-semester2

a completely new skill. This lesson will introduce them to some fundamental building

blocks, which will be revisited later. Programming is fun and rewarding once you get

the hang of it!

Topics covered:

Project: Make your own adventure game!

Discussion:

codecademy.com/glossary. Can you think of any good programming jokes?

WEEK ELEVEN: INTRODUCTION TO FUNCTIONS

http://www.codecademy.com/tracks/afterschool-semester2

Functions store blocks of code that can be called upon any time to avoid repetition.

They are one of the most fundamental concepts in all of computer programming, but

Topics covered: Functions - Using variables in functions - Returning a value at the

end of a function.

Project: Rock, Paper, Scissors

Discussion:

Remember to review last week’s topics: strings, numbers, variables and if/else

 statements in the beginning of the class.

Why are functions so useful to programmers?

 functions?

WEEK TWELVE: INTRODUCTION TO FOR LOOPS IN JS

http://www.codecademy.com/tracks/afterschool-semester2

useful for automating repetitive tasks.

Topics covered: For loops (one type of loop)

Discussion:

Why are loops so useful?

What else could you do with a for loop?

Stepping through a program line by line and seeing how the variables change

 can be useful for helping students understand how the programs work.

WEEK THIRTEEN: RECAP OF JAVASCRIPT

http://www.codecademy.com/tracks/afterschool-semester2

Go through what you have learned so far and have students present what kind of

games they have built. Make sure students remember at least the following:

Topics covered:

Operators: +*/-%

Branching: if() { } else if() { } else { }

what they do in their work. You can also reach out to local software companies their

WEEK FOURTEEN: PUTTING IT ALL TOGETHER

http://www.codecademy.com/tracks/afterschool-semester1

projects.

Project: Code’n’Tell

General tips

Google them.

missing bracket. Software programs are very picky about every single character,

so check them carefully. We run a program called a linter that checks your code for

Logic problems: trace through the program line by line. Speaking the program

out loud can really help you spot errors more quickly. Programmers call this rubber

duck debugging (http://en.wikipedia.org/wiki/Rubber_duck_debugging).

Printing out values of your variables at various places in the program can help

you reveal this sort of error. Once you get to be a more advanced programmer there

are more sophisticated debugging techniques, but this one will really help with

simpler programs.

DEBUGGING YOUR CODE

HTML & CSS

 styles.

Make sure you remember to close the tags in the right order. They should nest,

 {(}).

JavaScript

Variable names are case-sensitive and even changing one character will refer to

Make sure you used the right sorts of brackets (there are several: (), [], and {})

 and that each open bracket is closed.

 wrote a function but it’s not running, did you call the function?

help, see the teacher forum on our website.

enabled.

Clear your browser cache and restart the browser. You can clear the browser cache in

your browser settings or preferences.

For most common issues, see: http://help.codecademy.com/ You can also reach out

to us via contact@codecademy.com.

TROUBLESHOOTING

